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Abstract—Several K a-band spatial-amplifier power combiners  of QO power combining systems, are not able to determine the
and their free-space feeds were characterized using a high-resolu- amplitudes and phases of the electric-field vector components
tion extreme-near-field electrooptic measurement technique. The with high resolution across the array. This has prompted the de-

two-dimensional electric-field amplitude and phase maps obtained | t of lect tic field . t 31 that
from several arrays are presented. The usefulness of the technique V&'0PMEeNt O an electrooptic ield-mapping system [3] that pro-

for diagnostic purposes during the design and prototyping stages of Vides high spatial resolution and high measurement bandwidth
the active arrays is discussed. In particular, the electrooptic maps in order to evaluate the extreme near-electric-field patterns of
were shown to be valuable for making improvements in the bias radiating structures.
line design in one case, and for isolating faulty unit cells in another A number of electrooptic measurements of antenna near-field
case. .

patterns have been reported [4], [5]. However, previous work has
mainly concentrated on one-dimensional scans or the acquisi-
tion of only two field components in the near field, providing
limited information on active antenna arrays.
|. INTRODUCTION In this paper, extreme-near-field measurements based on the

HE use of microwaves in areas such as satellite commuﬁl-eCtO_OptiC sampling technique [6], [7] hay_e been performed for
cations, wireless and mobile communications, navigatioWYo different types off(a-band QO amplifier arrays. The re-

remote sensing, etc. has led to an extensive effort to prodtf‘é’éts have been used in order to evaluate the performance of

lightweight high-power alternatives to tube-based microwa\sge arrays .and identify important design i§sues. In the process
amplifiers. In particular, quasi-optical (QO) power-combinin conducting the measurements, three different types of horn

amplifier arrays have demonstrated power levels up to 100 tenna feeds, which are integral parts of the QO amplifier ar-
at X-band [1] and 25 W af a-band [2]. However challengesrays’ have also been characterized. The high resolution and ac-

associated with the operation of QO arrays still remain due fyracy of the electrooptic field-mapping technique has proven

the complexity of the designs and the related difficulty in isd° be advantageous in the design cycle of amplifier arrays, and

lating all parasitic high-frequency mechanisms. Thus, reliabhé?‘S dlagnpsed problems such as nonun|fo_rn_1 bla_s, nonumform
diagnostics that are performed in the initial design phase are i ed ampl!tud_e, and malfunctioning monolithic microwave in-
portant for the fundamental understanding of the physical prtg_grated circuits (MMICs).
cesses in the arrays.

Traditional near- and far-field measurement techniques using Il. MEASUREMENT SYSTEM CONFIGURATION

waveguides or antennas yield only a limited amount of infor- The experimental measurement system used for the ex-

mation on comp_hcated active arrays. These systems, while Pi¥me-near-field characterization of the QO amplifier array
viding valuable information on the coarse near-field operatio

Hructures is shown in Fig. 1. This type of electrooptic sam-
pling system has been introduced previously [3], [8], but is
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minimum detectable voltage is measured to be about 0.5 mV,
or —45 dBm, and the sensitivity is 40 m\/Hz. Furthermore,
DUT + the isolation between measurements of orthogonal-field compo-
xytransiationstage  nents, which is determined by comparing the amplitudes of the
components parallel to two orthogonal sides of a patch antenna
while using an electrooptic crystal that is aligned for maximum
Y sensitivity to only one of those components, is typically 30 dB.
Z . Due to this high cross-polarization-suppression characteristic,
electrooptic field mapping does not require any additional po-
larizing grid to separate one field component from the others.
Fig. 1. Electrooptic measurement schematic for near-field mapping of QO |n terms of the effect that the electrooptic probes have on the
amplifier arrays. field at the probing location (i.e., in terms of the invasiveness
of the probe), it is expected that the dielectric crystals will dis-
microwave signal frequency and an integer harmonic of therb the field pattern much less than a metal waveguide or dipole
80-MHz repetition rate of the laser [the local oscillator (LO)probe. Nonetheless, the BSO and Lita@obes do have high
takes place in the electrooptic crystal and is used to obtain \&lues of permittivity, in excess of 40 for both crystals and, thus,
IF that is fed into an RF lock-in amplifier [11], [12]. Usingcan be expected to have some influence on local fields [13].
phase-locked-loop electronics in the stabilized laser systegwever, it is also true that, in numerous instances for both
one is able to synchronize the continuous-wave (CW) sigrgilided [3], [14] and radiated fields [15], electrooptic measure-
from a microwave synthesizer to the laser pulse train, with tiheents have been demonstrated to be in excellent agreement with
small offset frequency (i.e., the IF) providing the time delalgnown or expected field behavior and with computational re-
for the sampling gate. Measurements in amplitude and phassts. Thus, our confidence in the accuracy of the measurements
are then performed simultaneously as the computer reads phesented herein is very high.
output of the two channels of the lock-in amplifier, which takes
the output of a low-frequency synthesizer, also synchronized to III. M EASUREMENT RESULTS

the laser electronics, to maintain a phase reference. h | . ‘ is sh - teed
The two types of electrooptic probes utilized in this paper The normal operation of a QO array is shown in Fig. 2. Afee

are fabricated from bismuth—silicate (BSO) and lithium—tantantenna radiates a wave that illuminates the feed elements of the

late (LiTaOy). These crystals allow the determination of thre@Ctive array, thus eliminating the need for a corporate feed. Ide-

orthogonal electric-field components above the antenna un&gy’ each el_em_ent ShOUId. receve the same amplitude and phase
test (BSO for the normal field and LiTaOfor the two tan- input, amplify it, and radiate in phase. The goal of free-space

gential fields). Thus, the BSO crystal is utilized to detect th%owercombining Is high power-combining efficiency for a large

field component that is perpendicular to the plane of a devic%gmber of elements. The feed can be placed in the far field so

under-test (DUT). In order to capture two tangential orthogé/—. altdthle arfray dls flflllu.mmatedh_b)r/] a plalt)nel wave. thgihh;wever,
onal-field components, the LiTa@rystal must be rotated about I€lds low Teed eliiciency, which can be Improved wi e use
an axis normal to the plane of the DUT between two orientatioﬂg bulky dielectric lenses. Alternatively, the feed can be placed

that are separated by 90The crystals have a tip area of At in the near field, with low associated diffraction loss and im-
x 40 pum for the BSO and 2@m x 10 um for the LiTaQy proved feed efficiency. This has been done by using specially

The DUT is mounted on a computer-controlledy transla- deS|gr_1ted l?ct)rnbantennas( hardl horns) [16], or b)l/;jeflgﬂ:n%t:\e
tion stage, and a typical scan over an array of several squfrray itself to be a microwave lens, e.g., as in [17]. In the fol-

re.
inches takes between 30-60 min, depending on the exact N9, QO arrays fgd by a ha}rd horn are measured and results
and desired resolution. The spatial resolution of the field—ma%[e presented and discussed in the context of array performance.
ping technique has been demonstrated to pm8although it is ) L

not necessary to scan fields with this level of detail for the me&: EXperimental Characterization of Horn Feeds

surements described herein. In addition to the two-dimensionaBefore testing the array of interest, it is important to char-
movement of the DUT, the optical components allow the prolaeterize the output field pattern of the feed horns because their
to have freedom of movement in the vertical direction in ordeperture distribution strongly affects the near-field pattern ex-
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Fig. 3. Electrooptic measurement results for various horn antennfs at 31 GHz. (a) Normalized amplitude for standard WR-28 horn and (b) phase (in
degrees). (c) Normalized amplitude and (d) phase for hard Hdrn(e) Normalized amplitude and (f) phase for hard h&i. The metal boundaries of the horn
apertures are overlayed with a bold blue line. The horizontal lines in the phase plots are the locations from which the one-dimensional date idefiged. ar
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Fig. 5. Schematic of near-field measurements for arragsd B; LiTaO; is
; used as the electrooptic sensing medium. To display important structures in the
0 20 40 60 80 100 array, the drawing is not to scale.

measurement position

Fig. 4. One-dimensional phase variations for three horn antennas along the CC bias paing
dotted lines shown in the phase plots in Fig. 3. The phase variations are extracted
alongAA’ for the standard WR-28 horBB’ for hard hornH 1, andCC’ for =140
hard hornH 2. Measurement position 50 is the center of the aperture. L E

. . . QuED E—-
cited on the array. A standard linear tapered horn and two dif- ﬁ
ferent types of hard horns were considered as feeds for the ar- 040 =
rays. One of the hard horns (label&d) is based on a standard 030 E
horn body with inserted dielectric, while the other (labetég)

000

uses a customized taper, as described in [16]. Dielectric layers
on the walls of the hard horns and lenses filling the aperture are L _ _ _

d in both cases to achieve uniform phase at a short dist Fig. 6. Electrooptic field mapping of the normalized amplitude of the QO array
used in bo ieve uni p IStaf) nadequate dc-bias network. The circuit outline is overlayed. The mapping

from the opening of the horn [16]. resolution is 50Q:m x 450um, and the total scan area is 6.25 en.8 cm.
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Fig. 7. Electrooptic scan of a unit cell in arr@/ (a) Normalized amplitude and (b) phase (in degrees). The scan step sizens¥300um, and the scan area
is 9.3 mmx 10 mm.
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Fig. 8. Amplitude and phase from electrooptic scan of array. (a) B/pé) TypeB. The square in arrag shows the position of the unit cell from Fig. 7. The
scan step size is 500m x 450um, and total scan area is 6.3 can5.4 cm.

The frequency of operation is 31.043 GHz, which is a combike edge of the aperture, which agrees well with theoretical pre-
nation of a 31.04-GHz RF signal (38880 MHz, the closest in- dictions for this horn output [18]. Fig. 3(c) and (d) displays the
teger-multiple frequency of 80 MHz to the operating frequenayormalized amplitude and phase of tieomponent of the elec-
of the horn antenna) and a 3-MHz IF signal. Due to the limitaric field for horn H1. In comparison with a standard horn, the
tion of the RF synthesizer used in the measurement (20-GHsults show significant improvement in the uniformity of the
maximum output frequency), a frequency doubler generatiphase [see Fig. 3(d)]. This phase variation for hBrhis around
31.043-GHz output from a 15.5215-GHz input signal was add&@°. The hornH2 shows the most uniform amplitude and phase
between the RF synthesizer output port and the input port of ttiistribution of the electric field [see Fig. 3(e) and (f)]—there
horn antennas. Fig. 3(a) and (b) shows the normalized amplitid®nly a 20 phase variation measured across the aperture, and
and phase of the dominant electric field component (i.e., thige amplitude distribution is within 10 dB. The phase variation
y-component) for the standard linear tapered horn. The phasoss each of the horns is more easily extracted from one-di-
measurement displays a T8thase variation from the center tomensional phase maps, as shown in Fig. 4. Based on these mea-
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Fig.9. Coupling measurements with central element excited by waveguide feed, shown with a blue rectangle. Normalized amplitude (left-Hantpateico
phase (right-hand-side column) for (a) arrdyand (b) arrayB obtained by electrooptic measurements with a scan resolution @f 500 450.m. The total scan
area is 6.3 cnx 5.4 cm.

surement results, as well as on the limited space for the feed inrhe two different biasing schemes investigated were imple-
the electrooptic measurement setup, hé#h was selected as mented as a direct result of an initial electrooptic-field-mapping

the near-field feed for the QO arrays tested herein. diagnostic measurement on a previous embodiment of these ar-
rays [8]. A cross-sectional view of the way in which this and
B. Slot Antenna Arrays subsequent measurements were performed is shown in Fig. 5,

Two Ka-band slot antenna amplifier arrays with 36 elementghere the circuit side of the array is facing the feed horn and
each were fabricated on aluminum-nitride substrates withe probe scans the backside of the slots. The array is aligned
commercial low-power MMIC amplifiers in coplanar wavedo the radiation center of the feed horn using the results shown
guide (CPW) circuits, as described in detail in [19]. The twin Fig. 3, suggesting that electrooptic field mapping could also
arrays differ in the biasing network only; the RF parts of thee applied for axial alignment of the elements of a quasi-optic
arrays are identical. For completeness, we list the microwasgstem. The field image in Fig. 6, measured in the extreme near
measurement results of these two arrays. The saturated oufigld of the array several hundred micrometers above its surface,
powers at 31 GHz were 0.3 and 0.5 W, with each MMIGhows that most of the functioning unit cells are concentrated
contributing on average between 8.3 and 14 mW—this is 7 d@arest to the dc-bias bus bar for this first diagnostic array. This
lower than the power specified by the manufacturer for a highked to the conclusion that the biasing was nonuniform due to
bias point. No liquid cooling was needed, and the AIN substragdmic losses in the resistive ladder network consisting of the
reached a peak temperature of @D The average small-signalbias lines and internal biasing circuit of the MMICs [19]. Sub-
gain contributed by the MMICs was 10 and 14 dB, respectivel§ggquent probe-station dc measurements showed a 5% error in
and was measured relative to a passive array. The measuhedline of resistance as compared to the simple circuit-theory
far-field radiation patterns had bias on/off ratios of over 34 arfediction. Based on this diagnosis, the bias lines for the two
38 dB, and 3-dB beamwidths of about10 new arrays were redesigned for more uniform biasing. One array



854 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 5, MAY 2001

|

o (i F] i 1 Giexl LT, o] .00

Fig. 10. Coupling measurements with edge-fed element. The waveguide feed is shown with a blue rectangle. The yellow rectangle shows the pteshgest cou
output power. Measured normalized amplitude (left-hand-side column) and phase (right-hand-side column) for{zgdrén) arrayB obtained by electrooptic
measurements with a scan resolution of x@0 x 450 um. The total scan area is 6.3 cm5.4 cm.

(i.e., A) uses supplementary bias lines consisting of adhesiseheme of arrayp provided better uniformity across the array
mylar and copper tape in order to reduce slot-line radiation adde to reduced ohmic loss, as explained in [19]. This explains
ohmic losses in the CPW bias lines. The second array 8., and confirms the difference in output power observed in the
uses thicker bias metallization with additional air bridges ania-band far-field measurements for the two arrays.
capacitors to suppress slot-mode radiation. Initially, some of the observed inconsistencies for arrdys
Several measurements were made on the two arrays. An axd B were attributed to possible mutual coupling between
treme-near-field scan of the-component of the electric field array elements. Therefore, additional measurements have
across a single output slot antenna element, approximately cemestigated inter-element coupling (isolation between cells)
trally located in arrayB (Fig. 7) shows proper operation of theby exciting only a small part of the array. An open-ended
second-resonant slot. There are two peaks in the radiation, syiz-band waveguide was positioned across one of the input
metric with respect to the CPW feed, and the phase measwsi®t antennas to provide the localized excitation. First, the
ment shows in-phase operation of the two halves of the slot,@®en-ended waveguide was placed in the center of the array,
expected theoretically for this type of excitation. as shown in Fig. 9 with a blue rectangle. The feed was then
Both arrays were fed with hard ho#d2. The electrooptic positioned at the edge of the array (Fig. 10). The edge and cen-
scans of the electric-field component copolarized with theal elements see different boundary conditions and, therefore,
output slot antennas for arrays and B are shown in Fig. 8. the coupling in these two cases is expected to be different. The
These scans show improvement over the first diagnostic ar@gntrally-excited arrayd shows predominant coupling to the
in terms of biasing uniformity and point out that the biasearest row, whereas arr@’has more coupling to the nearest
network design is critical to proper operation of large array@ement in the same row. This is believed to be due to the fact
as the number of elements increases. In this case, the biashaj array B has more capacitors along the horizontal bias
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Fig. 11. Electrooptic mapping result for the patch antenna array. (a) Normalized amplitude and (b) phase (in degrees) of the arrgxcdanpibeent;
measurement height: 0 mm. (c) Normalized amplitude and (d) phase for a measurement height of 1/8mhé unit step size for the scanning was 284
x 341 pm, and 100 steps were taken for both theandy-directions. The total scan area covers 28.4 xr84.1 mm.

lines, preventing coupling in this direction. In the edge-excitggerformed in the extreme near field only over the active area
case, arrayd shows an interesting build-up in coupling alongf the array.
a diagonal [see Fig. 10(a)] so that the farthest edge elemenFEor the measurement, hoH2 was again used as the feeding
from the excited unit cell is fully activated. This indicates thatintenna [see Fig. 3(e) and (f)]. The unit step size for the scanning
if coupling is not properly accounted for in the design, field cawas 284.m x 341.m, and 100 steps were taken for both the
accumulate across the array due to the MMIC gain. This candy-directions, resulting in a total scanning area of 28.4 pim
result in nonuniform field distribution across the array, eved4.1 mm. The same two types of crystals—BSO forthmm-
if the cells are excited uniformly and have uniform gain. Fgoonent and LiTa@ for the x- and y-components—were used
example, in this case, the lower third element, shown in yellow detect the three orthogonal electric-field components for this
in Fig. 10(a), is not at all excited directly by the wave radiatedrray.
from the feed. In array, this effect is not noticed because of Fig. 11 shows one of the measurement results obtained by
the better isolation between the rows. electrooptic mapping. Fig. 11(a) and (b) displays normalized
amplitude and phase (in degrees) of freomponent, which
was the dominant field component for this array. The measure-
ments are made at a height that is within several micrometers
Another type of amplifier array, produced at Lockheedf the array surface. Due to the high spatial resolution of the
Martin, Orlando, FL, and using microstrip patch structureslectrooptic measurement technique, the two individual radi-
for the input and output antennas, has also been measusidg edges of each patch antenna are easily distinguished in
using the electrooptic field-mapping technique to examine tlirég. 11(a). The results also show a good agreement with pre-
characteristics and performance of the array. This array has fiileus measurements of a single patch antenna [15]. The field at
columns of active cells, with three of those columns havirg distance of 1.2 mm above the array, which corresponds to a
four elements and the other two columns consisting of threestance of\/8, is shown in Fig. 11(c) and (d).
elements. The array has two MMIC amplifiers per unit cell, It is quite noticeable that one element at the bottom of the
one to amplify the input signal from the feed horn before it imiddle column was malfunctioning. It was also found that this
coupled through the slot and the other one mounted right befonalfunctioning element disturbed the phase distribution for the
the output patch antenna. In order to demonstrate the capabitityay significantly [see Fig. 11(b)]. Despite the electric failure of
of this measurement technique to resolve the independéns element, most of the patch antennas show a quite uniform
amplitude and phase of each active cell, scanning has b@dase distribution. These measurement results clearly demon-

C. Amplifier Array Utilizing Patch Antennas
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